
Scheduling of Sport Tournaments using Constraint
Programming

Anton Spanne

Thesis for a diploma work in Computer Science, 30 ECTS credits
Department of computer Science, Faculty of Science, Lund University

Examensarbete 30 hp
Institutionen för datavetenskap, Naturvetenskapliga fakulteten, Lunds Univer-
sitet

Scheduling of Sport Tournaments using Constraint
Programming

Abstract

This thesis investigates whether it is possible to construct a scheduling algorithm
for large sport tournaments. These can easily contain several thousand matches
that need to be scheduled to a large amount of different arenas. Usually the
tournaments take place during a limited time period of a few days and the entire
schedule has to be constructed just a few days prior to the tournament.

The common structure of many tournaments along with some basic rules is
used to divide the entire problem into several Constraint Satisfaction Problems
(CSPs) that can be solved independently. The CSPs are modeled with the Con-
straint Programming library JaCoP and with some additional constraints and
incomplete search methods that where implemented during the thesis work.

While the large part of the constructed CSPs can be solved completely within
a few minutes, some of them need to use incomplete search methods. A combi-
nation of Limited Discrepancy Search and Credit Search was successfully used
when necessary. By creating a variable and a value ordering based on respec-
tively the fail-first-principle and the succeed-first-principle, the results improved
dramatically. Pareto optimality and the ε-method was used to handle multiple
objectives.

The complete algorithm shows promising results, and is easily extendable
with extra rules and objectives. Some examples of such extensions are presented
in the thesis.

Schemaläggning av Idrottsturneringar med hjälp av
Constraint Programmering

Sammanfattning

Det här examensarbetet undersöker huruvida det är möjligt att konstruera en
schemaläggnings-algoritm för stora idrottsturneringar. En s̊adan kan inneh̊alla
flera tusen matcher som behöver schemaläggas i flertalet arenor. Vanligtvis varar
dem under ett f̊atal dagar och hela schemat m̊aste konstrueras bara en kort tid
innan turneringen inleds.

Den struktur flertalet turneringar har gemensamt samt n̊agra grundläggande
regler har använts för att dela upp hela uppgiften i ett flertal constraint satis-
faction problems som kan lösas oberoende av varandra. Dessa är modellerade
i JaCoP samt med ytterligare constraints och icke-kompletta sökmetoder som
implementerades i samband med examensarbetet.

Medan den största delen av problemen kan lösas fullständigt inom ett par
minuter, behöver vissa av dem använda sig av icke-kompletta sökmetoder. En
kombination av limited discrepancy search och credit search användes vid behov
med gott resultat. Pareto-optimalitet och ε-metoden användes för att hantera
flera samtida m̊al i sökningarna.

Den fullständiga algoritmen visar lovande resultat, och den är dessutom lätt
utbyggbar med extra regler och m̊al. Exempel p̊a s̊adana finns presenterade i
arbetet.

Contents

1 Background 1
1.1 Problem area and previous work 1
1.2 Tournaments . 2
1.3 Outline . 4

2 Constraint Programming 5
2.1 Java Constraint Programming Library 6
2.2 Labeling . 7
2.3 Constraint Propagation . 8
2.4 Constraints . 9

Tasks . 10
Cumulative . 10
Diff2 . 11
MinSquare . 11

2.5 Search heuristics . 12
2.6 Incomplete search methods . 13
2.7 Multiple Objectives . 15

3 The algorithm 19
3.1 Tournament model . 19
3.2 Generation of test data . 20
3.3 Overview of the algorithm . 21
3.4 Step 1. Generate game templates 21
3.5 Step 2. Assign arenas . 22

CSP Models . 23
Objective . 24
Variable and value ordering . 27
Composite Arenas . 29

3.6 Step 3. Assign timeslots . 31

i

CSP Models . 31
Objective . 34
Variable and Value ordering . 35
Related Arenas . 36

4 Discussion 39
4.1 About the results . 40

Step 2 . 40
Step 3 . 40

4.2 Future work and improvements 41
4.3 Conclusion . 41

Bibliography 43

A Test data 45

B Word list 47

List of Figures

2.1 A simple search tree . 7
2.2 The same search tree with constraint propagation 8
2.3 Search tree with a different variable ordering 14
2.4 Incomplete search examples . 14
2.5 Illustration of different multiple objective strategies 17
2.6 Example of a Pareto frontier . 18

3.1 Overview of the algorithm . 21
3.2 Comparing performance using different objectives 26
3.3 Density and Ground example . 27
3.4 Comparing performance using different value and variable orderings 29
3.5 Performance with an improved value ordering 30
3.6 Composite arena example . 30
3.7 Solution to a CSP from step 3 . 34
3.8 Time complexity simulations on step 3 CPSs 36

ii

Acknowledgements

My acknowledgements go to Krzysztof Kuchcinski and Ferenc Belic at the De-
partment of Computer Science for their help and comments during this work.
I am grateful to Krzysztof for giving me the opportunity to help his students
as a lab assistant during his Constraint Programming course. Teaching and ex-
plaining is a very good way to learn and it helped me develop many of the ideas
used in this thesis. Krzysztof has also developed JaCoP together with Radoslaw
Szymanek.

Further acknowledgements go to Emme Adbo and Stefan Evertsson for shar-
ing their tournament expertise with me.

iii

1

Background

This thesis originated in the issue of managing very large sport tournaments.
One mayor part of this is to construct a schedule for all the matches in the
tournament. As the tournaments grow large, this becomes a complex problem
as both the number of matches and the number of arenas that has to be used
increases.

Since the number of teams participating in the tournament is unknown until
just a few days prior to the first match, the available time to construct the
schedule is limited. Manually created schedules also tend to have errors that can
be hard to find. Correcting these, or changing the schedule during or close to
the tournament is not appreciated by the teams, as they might be traveling to it
from all over the world.

This thesis will investigate whether an algorithm using Constraint Program-
ming can be constructed to handle such a scheduling process.

1.1 Problem area and previous work

There are many types of sport tournaments with very different demands. Some
of the most publicly known are the national series of different sports. Most of
these games are fairly simple in the sense that there are only a small number of
teams or individuals competing, which results in a limited number of events to
schedule.

There exists several algorithms that can handle such scheduling problems.
Some of them, such as [15] and [9], use Constraint Programming and others
use other techniques [8]. It also exists a standardized test problem called ”sport
tournament scheduling1. The main differences between the problem defined there
and the tournaments that this thesis will deal with, are the size and the time
span. While the time span of the standardized problem is several weeks, with

1http://www.csplib.org/prob/prob026/

1

1. Background

one match for every team each week, all the matches in the kind of tournaments
this thesis will consider will be played in a few days. This means that it will be
a completely different scheduling problem. The currently best algorithm for the
standardized problem can handle 50 teams and about 1000 matches [9], while
some large tournaments contain up to 1600 teams and 4500 matches2. As the
algorithm should be fast enough to be used for real, which means running for
days or even hours is out of the question, a completely fresh start is needed.

There actually exist one product, called Cup Assist, that is built to schedule
this kind of tournaments3. It is using a technique called Mixed Integer Quadratic
Programming to solve the scheduling problem. A similar approach to forest
treatment is described in [17]. It is currently used on tournaments with up to
800 matches with good results. As it is hard to compare the algorithms without
comparing the whole products, including user interface, Cup Assist is simply
mentioned here to allow the interested reader to test and evaluate it.

1.2 Tournaments

A tournament is divided into several categories. Each category contains teams
with a certain age and/or a specific gender. The purpose of the tournament (other
than having fun) is to create a ranking between the teams in each category. This
ranking could be more or less complete, but at least a winner should be appointed.
The simplest way of doing this is with a playoff. This is a tree structure, where the
teams are eliminated whenever they loose a match until only a winner remains.
One such playoff would be created for each category and at the end there will be
one winner from every playoff.

There are at least two important problems when playoffs are used. The first
one is that most teams pay (travel, accommodation and entry fees) to be able
to play in the tournament. The risk of loosing their first match would simply
deter many teams from taking part in the tournament. The other problem is the
validity of the final ranking. In the ideal case, the two best teams should meet
in the last match, but there is no way to make sure that that will happen.

The solution to these problems is to establish a ranking between the teams
by playing some matches before the playoff. The teams are guarantied a certain
amount of matches, and it will be possible to create a playoff where the best
teams, according to the new ranking, do not meet until the end of the playoff.
The matches are created by dividing the teams into groups. Within each group
all the teams play one game against every other team in that group. Currently
the algorithm that will be shown in the following chapters will only consider these
group matches. The construction of a scheduler for the playoffs is slightly simpler,
since the ordering of the matches are more strict which reduces the search space.

2Gothia Cup: http://gothiacup.se/
3Cup Assist: http://www.cupassist.com/

2

1.2. Tournaments

Otherwise, much of the ideas can be directly transferred from scheduling the
group matches.

The schedule that is created has to follow some basic rules. These are the
most basal need for a scheduling algorithm . It should also be possible to extend
the constructed algorithm with additional rules without too much work. The
first two basic rules are

• Two matches cannot be played at the same time and place

• A team cannot play two matches at the same time (often extended to that
a team cannot play two consecutive matches)

The first rule is just a basic scheduling rule, no two events can be scheduled
at the same place and time. The second rule does make sure that a team is
allowed to rest for at least one match between two of its matches. Other than
the first two basic rules, some additional rule exist that should be taken into
consideration.

• All matches from one division that are scheduled during a single day should
be played in the same arena

• All the matches of a category might be restricted to a subset of all arenas

• Arenas might have varying opening hours

If a teams matches where located at different arenas during the same day,
the team would have to travel between the arenas. This is not fair and it would
cause a lot of disorder as some of the teams are travelling to the tournaments
from far away and do not have sufficient local knowledge. There are exceptions
to this rule, and they will be discussed and tested as an extension to the basic
algorithm.

Since the categories are divided by age, some differences between them apply.
There might for example be a mayor arena where the oldest teams should play
if possible. In handball, the older teams use wax on their balls to make them
easier to catch. This is not allowed in all arenas as the floors get sticky. There
might also be arenas which are too small or do not have the correct lines on the
floor, or perhaps goals which do not have a regulated size. Younger teams are
often scheduled to such arenas, and common tournament rules might prohibit
older teams from using them. This calls for the second rule, where a category
can be restricted to a subset of all arenas.

Other than the rules, some measures of how good a completed schedule is
has to be established. The two most basic are given here, but some additional
examples of measures are given in Chapter 3.

• Minimize the total waiting time for all teams

• Minimize the required opening hours for each arena

3

1. Background

1.3 Outline

The purpose of this thesis is to construct a basic algorithm that can schedule
large sport tournaments in a reasonable amount of time. To make the algorithm
usable, a reasonable amount of time is a matter of minutes, which differs from
the computer science use of reasonable that can mean before the universe ends
or before my thesis has to be completed.

There will also be some focus on the structure of the algorithm. Is it easy
for a user to understand and follow the process and is it easy to construct a
user friendly interface to it? As the thesis work only covers the actual algorithm
and not the implementation of such a user interface, ideas are presented and
discussed, but no finished examples are shown.

The next chapter will focus on Constraint Programming, to make it possible
for the reader to understand chapter 3, where the algorithm is discussed, even if
you are not a Constraint Programmer. Chapter 3 will then describe the algorithm
and some extensions to it that which been implemented. At last, the reached
results are discussed in chapter 4 together with some ideas for improvements and
future work.

4

2

Constraint Programming

“Constraint Programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming;
the user states the problem, the computer solves it”

Eugene C. Freuder, 1997

This chapter is meant to give a brief overview of Constraint Programming
and how it is used. It will only cover those areas that are deemed necessary to
be able to understand the rest of this thesis. Much more information for the
interested reader can be found in [14], [13] and [2]. The latter is recommended if
the topic is scheduling of different kinds.

Constraint Programming approaches the problem of assigning values to a set
of variables. The available values for each variable are specified in one domain for
each variable. The variables are also related to constraints, where each constraint
can be related to one or more variables. These constraints limit the possible com-
binations of values that can be assigned to their related variables. This leads to
the classical definition of a Constraint Satisfaction Problem (CSP).

A CSP is a 3-tuple P = 〈X ,D, C〉 where

X is a finite set of variables, X = {X1, X2, . . . , Xn},
D is s set of the corresponding domains, D = {D1,D2, . . . ,Dn} and
C is a set of constraints.

A solution s to P is found when all variables in X have had a value from their
domain assigned to them such that all the constraints in C are consistent.

5

2. Constraint Programming

Example 2.1. We construct a CSP with the following variables, domains and
constraints:

X= {X, Y, Z}
D= {{0, . . . , 2}, {0, . . . , 2}, {0, . . . , 2}}
C = {X > Y,Z > X − Y }

There are only two value combinations form the given domains that satisfy both
the constraints. Hence the CSP has the following solutions:

s1 = {1, 0, 2}
s2 = {2, 1, 2}

2.1 Java Constraint Programming Library

There exist many different toolboxes, written in a multitude of languages, for
modelling and solving constraint related problems. This thesis work does ex-
clusively use the Java toolbox JaCoP1 to evaluate and implement the described
algorithms.

As it is written in Java, it looses some efficiency against the really fast solvers
that are written in C++ and the like. At the same time it is Open-Source and
very easy to extend. This makes it a good tool for testing new ideas. Since it is
Open-Source, working with it also allows you to learn all the inner workings of
the solvers (or even implement your own). Nothing has to be explained through
magic.

The latest currently stable version of JaCoP is version 2.3. That is also the
version that is used throughout this thesis work.

Example 2.2. Example 2.1 as it would look in JaCoP v2.3:

Store store = new Store();

// Variables:
Variable X = new Variable(store,0,2);
Variable Y = new Variable(store,0,2);
Variable Z = new Variable(store,0,2);

Variable tmp = new Variable(store,0,4);

// Constraints:
store.impose(new XltY(Y, X));
store.impose(new XplusYeqZ(Z, Y, tmp));
store.impose(new XgtY(tmp, X));

Note that the Z > X−Y constraint is created with two constraints, Z+Y = tmp
and tmp > X. The result is no different, but JaCoP has not got any constraint
implementation that can handle that relation by itself.

1http://www.jacop.eu

6

2.2. Labeling

2.2 Labeling

Assigning the values to the variables is handled by a search or labeling algorithm.
The simplest one would just assign values and then use the constraints to make
sure that no inconsistencies exist with the current assignments. The algorithm
would choose one variable at a time, assigning it a value from its domain. If a
inconsistency is found, the algorithm simply tries out another value. When all
values of a variable has been tried, the search backtracks one step to the previous
variable.

The labeling process can be organized into a tree structure as in figure 2.1
where the CSP from example 2.1 is traversed. At each node in the tree a variable
is selected. In the example the variable X is selected first. It is assigned 0 from
its domain. Then, the variable Y is selected, and the consistency checks of the
constraint X > Y will fail for all the values in Y ’s domain. This is shown with
crosses in the figure. Since all values in Y ’s domain have been tried and caused
inconsistencies, the search has to backtrack one step. Back at the root, another
value from X’s domain is tried. The search continues in this manner until all
combinations of value-assignments have been tried.

Figure 2.1: A simple search tree traversing the variables from example 2.1.

A solution is found when all variables have been assigned values. In the
figure, this is shown with a small circle. If a single feasible solution is enough,
the search stops. If all solutions should be found, the search backtracks and
continues to find the remaining solutions. Most of the times though, a single
solution is enough. But that solution is often required to be optimal in some
sense. This can be accomplished with a extra cost-variable that should be either
minimized or maximized.

When such a variable is used, every time a solution is found, the cost is
recorded and the cost-variable is limited to be smaller (or larger) than the cost of
the found solution. This means that the cost-variable and its related constraints
can be used to prune the search tree. All solutions will not be found, but if the

7

2. Constraint Programming

search is allowed to finish and the whole search tree is explored, at least the best
solution will be found.

To evaluate labeling as a method to solve CSPs, it is interesting to to discuss
its computational complexity. Considering a simple CSP with n variables which
all have domains with less than m values, the worst case would force the algorithm
through mn nodes to find all solutions.

Many CP decision problems are NP-complete. The task of finding a solution
to such a CSP takes exponential time. However, if a potential solution is given,
it only takes a polynomial amount of time to validate the correctness of it. If a
decision problem that is NP-complete is reformulated into a optimization problem
with a cost-variable, it will be of NP-hard time complexity. Verifying if a given
solution is actually the optimal solution would in that case take exponential time.

Since it is not (currently) possible to reduce the NP-complete or NP-hard
problems into more well behaved problems with nicer complexities, the course of
action is now to try to reduce the domains of all variables. This will reduce the
size of the search tree, even if it will still be a NP-hard or NP-complete problem.

With many variables, the exponential complexity will take its right, even
with efficient pruning of the search tree. It will not be possible to examine the
whole search tree since it will be extremely large. In such a situation, incomplete
search methods are used.

2.3 Constraint Propagation

One way of reducing the number of nodes that has to be examined in the search
tree is to apply the constraint logic before a value is assigned to the variable.
Instead of using the constraints to validate nodes in the search tree, they can
be used to prune the tree, removing values that are inconsistent with the cur-
rent assignments. This is called constraint propagation and is widely used in in
different constraint programming tools including JaCoP.

Figure 2.2: The resulting search tree traversing example 2.1 when constraint
propagation is used.

8

2.4. Constraints

Using propagation techniques with the CSP in example 2.1 would yield the
search tree in figure 2.2. The dashed arcs and nodes in the figure are paths of the
tree that can be pruned by one of the constraints and do not have to be searched.
As an example, the value 0 can be removed from X’s domain even before any
labeling occurs. This is because X > Y , and Y cannot be smaller than 0. Hence
X > 0 and therefore 0 can be removed from X’s domain.

The nodes with small inner circles are nodes from where it is possible to find a
solution using only constraint propagation. In the current example, the labeling
algorithm only has to assign a value to X (either 1 or 2). The constraints can
then deduce which values Y and Z have to have to avoid inconsistencies.

2.4 Constraints

There exist a lot of different constraints that are widely used with CPSs. The
purpose of this brief survey is to give an introduction to the constraints that are
used in the scheduling algorithm. Out of all the constraints shown here, only
MinSquare had to be constructed for this thesis, the rest of them are already
implemented in JaCoP. Some of the constraints are fairly simple and require no
elaborate explanation. These constraints are shown in table 2.1. The propagation
techniques they employ will not be discussed here, but the interested reader can
find more information about general propagation in [14], and the propagators for
specific JaCoP constraints can be found in the JaCoP source code.

Table 2.1: Some common constraints that are used in this thesis

Min({X1, ..., Xn}, Min) Min =
n

min
i=1

Xi

Max({X1, ..., Xn}, Max) Max =
n

max
i=1

Xi

Sum({X1, ..., Xn}, Sum) Sum =
n∑

i=1

Xi

XplusYleqZ(X, Y, Z) Z > X + Y

In(D, X) X ∈ D

Element(Index, {X1, ..., Xn}, V alue) V alue = XIndex

Reified(C, X) X :: {0, 1} C.consistency()⇔ X = 1

9

2. Constraint Programming

The In and the Reified constraint are special in the sence that they do not
only have variables as input. The In constraint restricts the supplied variable X’s
domain to only contain values from the given domain D. The Reified constraint
takes another constraint C as input together with a binary variable X. If C is
consistent, then X has to be 1 or the Reified constraint will not be consistent. If
C is not consistent, then X has to be 0 for the Reified constraint to be consistent.

Tasks

The constraints in the following sections all use the task concept. A task is
something that needs to be scheduled. This could be anything from a lecture
in a school to a computer operation that should be scheduled to a processor.
Each task also has a resource demand which specifies the amount of resources it
occupies. A general task that uses resources can be defined as the 4-tuple

task = 〈T, R,D, C〉

where T is its start time, R is the resource it uses, D is its duration and C
is the resource demand. It can be viewed as a rectangle in a 2-dimensional space
where one dimension is time and the other resources.

Cumulative

The cumulative constraint was created for scheduling problems in [1], where
each task that should be scheduled uses resources. It makes sure that at any one
time the total amount of resources used by all tasks running at that time does
not exceed a given limit. The Cumulative constraint is used in the following way:

Cumulative(Tasks, Limit)

or as it is defined in JaCoP:

Cumulative({T1, . . . , Tn}, {D1, . . . , Dn}, {C1, . . . , Cn}, Limit)

where n is the number of tasks, Ti is the start time for task i, Di the dura-
tion and Ci the resource demand. Limit specifies the resource limit at any given
time. In the JaCoP implementation the limit has to be reached at least once in
the schedule. Otherwise the cumulative constraint will not be satisfied. It can
be noted that cumulative does not care about which resources the tasks use, it
only cares about how much resources they use. The constraint can be formally
defined as:

10

2.4. Constraints

∀t :
∑

k:Tk≤t≤Tk+Dk

Ck ≤ Limit

with the possible addition of:

∃t :
∑

k:Tk≤t≤Tk+Dk

Ck = Limit

The propagators the JaCoP implementation uses have quadratic time complexity.
They are thoroughly explained in [2].

Diff2

The Diff2 constraint can be used in a similar way as the Cumulative constraint.
The difference in use is that the Diff2 constraint also keeps track of which re-
source the task is scheduled to. It is used in the following way:

Diff2(Tasks)

or as it is defined in JaCoP:

Diff2({〈T1, R1, D1, C1〉, . . . , 〈Tn, Rn, Dn, Cn〉})

where n is the number of tasks, Ti and Ri are the starttime and the resource
and Di and Ci are the duration and the resource demand for task i. It can be
formally defined as:

∀i, j : i 6= j , Ti + Di ≤ Tj ∨ Tj + Dj ≤ Ti ∨Ri + Ci ≤ Rj ∨Rj + Cj ≤ Ri

Translated to text, it says that if you select two different tasks, there has to
be one dimension, either time or resource, where the two tasks do not overlap.
This has to hold for all combinations of tasks. The propagation technique used by
the Diff2 constraint in JaCoP uses a method called Plane Sweep that is described
in [6].

MinSquare

MinSquare calculates the squared sum of all resource uses for each domain value.
Its purpose is to be used along with something similar to a Cumulative constraint.
It is implemented for use in this thesis using the JaCoP framework. It is defined
as follows,

MinSquare(Tasks, Sum)

11

2. Constraint Programming

or as it is defined in the JaCoP extension,

MinSquare({T1, . . . , Tn}, {D1, . . . , Dn}, {C1, . . . , Cn}, Sum)

where n is the number of tasks, Ti is the start time for task i, Di the dura-
tion and Ci the resource demand. Sum is defined by the equation:

Sum =
∑

t

 ∑
k:Tk≤t≤Tk+Dk

Ck

2

The propagation technique MinSquare uses, tries to calculate a minimal bound-
ary on Sum’s domain. This is done by first calculating the total resource demand
for all fixed tasks for each time t. Then all the remaining tasks are added to the
existing sums. This is done in a iterative manner where the most resource de-
manding task is added to the currently smallest time-sum. By ignoring the time
domain of the tasks, it is ensured that no smaller solution can exist.

Currently, calculating a minimal boundary using the tasks is all that is im-
plemented since it is the only propagation that is needed in this thesis. Other
pruning would be possible, but it is hard to say if the extra time it would take
to prune would pay off in increased labeling speed.

2.5 Search heuristics

Both constraint pruning and the discussed constraints are general improvements
to prune the search tree. None of them use problem specific knowledge to improve
the labeling process. In figure 2.3, labeling has been applied to the same problem
as in figure 2.2 on page 8. The difference is that the variables are changed from
X, Y , Z to Z, X, Y . It is apparent, comparing figure 2.3 to figure 2.2, that the
size of the search tree is affected by the variable ordering. The time it takes to
find the first solution is further more impacted by the ordering of the values in
the domains of the variables. If it is enough with one solution, or if the search is
incomplete, this might greatly impact the speed of the labeling process.

Several different heuristic approaches that try to take advantage of this exist.
They do often require some problem specific knowledge to be chosen and used
properly. A general principle that is widely used when ordering variables is the
so called first-fail principle. This principle was heuristically motivated in [10] by
Haralick and Elliott. The principle is further investigated in [5] where they show
that the principle leads to small search trees.

The first-fail principle says that the variables that most likely are causing
inconsistencies are chosen first to find the inconsistencies at a low level of the
search tree. The idea is to avoid that the same inconsistencies reoccur in different
branches of a large search tree. A simple example of a first-fail heuristic is to

12

2.6. Incomplete search methods

Algorithm 1 MinSquare pruning of Sum using the supplied tasks
for i = 1 to n do

if domainSize(Ti) = 1 then
for j = 0 to Dj − 1 do

sums[Ti + j]← sums[Ti + j] + Ci

end for
end if

end for

for i = 1 to n do
if domainSize(Ti) > 1 then

min ← indexOfMin(sums)
for j = 0 to minValue(Dj)−1 do

sums[min + j] ← sum[min + j] + Ci

end for
end if

end for

forall sum in sums do
totalSum ← totalSum + sum2

end for

impose Sum < totalSum

always choose the variable with the smallest domain.
Similar to the first-fail principle for variable ordering, there exist a succeed-

first principle for ordering domain values. It is discussed and tested together with
the first-fail principle in [16]. If the purpose of the search is to find a optimal
solution, selecting values from the domains that are most likely going to be part
in such solutions is a good idea. In a scheduling problem, where the last end time
should be minimized, a succeed-first heuristic would always choose the smallest
value of the domain.

The selection of a suitable search heuristic is somewhat of an art, and with
large problems it is hard to show that a certain strategy is better than another.
In these cases this has to be deduced by extensive testing.

2.6 Incomplete search methods

Since the labeling process is a NP-complete, or when it is a optimization problem
a NP-hard problem, there will always be a sharp limit to how many variables
the algorithm can handle if all the possible assignments are explored. When that
limit is reached, some assignments have to be left out of the search in order for

13

2. Constraint Programming

Figure 2.3: The resulting search tree when traversing the CSP in example 2.1
with the variable ordering Z, X, Y .

it to finish in a reasonable amount of time.

(a) LDS with l = 1

(b) CS with 7 credits

(c) Combined LDS and CS

Figure 2.4: Incomplete search
examples. Dotted vertices in-
dicates that the branch is not
explored

There exist several incomplete search meth-
ods that heuristically choose which branches of
the search tree that should be explored. The
most common ones can be found in [3], where
they are described in simple and consistent way.

One of the earlier methods that where devel-
oped is the Limited Discrepancy Search (LDS)
[11]. It simply limits the number of failed
assignments that are allowed to take place in
a branch. If the limit is reached, no more
values are tried in that node and the search
backtracks to the previous node. The number
of branches LDS will explore is in the worst
case

(d− 1)
l∑

i=0

(
n

i

)
where n is the number of variables, d is the do-
main size of the variables and l is the discrepancy
limit. With small values of l this time complexity
is well behaved. An example of a LDS with one
allowed discrepancy can be seen in figure 2.4(a).

Credit Search (CS) is another incomplete
search method described in [7]. It does not limit
the number of discrepancies, but the number of
nodes that can be visited in the search tree. It
has an upper limit called credit, that controls the
number of branches that are allowed in a node. At each node, the given credit

14

2.7. Multiple Objectives

available at that node is distributed equally among the branches that originates
from that node. If there are more branches than credits available, the branches
without credits will not be explored. It means that when the credit drops to 1
in a branch, that brach will not allow any backtracks. Upon backtracking the
search jumps back until it finds a node that has credits left. An example of a CS
with 7 credits can be seen in figure 2.4(b).

The advantage of credit search is that it is very easy to control its time
complexity. Since the number of nodes that are visited are controlled by the
credit given, the time complexity is simply O(c), where c is the credit.

In this thesis, when the variables grow to large for a complete search, a
combination of CS and LDS is used. In the beginning it uses the credits as usual
in CS, but when the credits drop to 1, it uses LDS to explore the current branch.
The purpose of this construction is to be more thorough when examining the
variables at the beginning of the search tree as the value ordering heuristics tend
to be less informative there. As the search goes deeper down a branch of the tree,
variables are assigned values which constrain the problem harder. This makes
the value ordering heuristic more unambiguous and therefore it can be trusted
to a greater extent. An example using both CS and LDS can be seen in figure
2.4(c). The figure does only show the LDS on one of the branches from the CS,
but it does actually perform a LDS on all the branches in the CS tree that have
credits left.

The choice of a incomplete search method is not obvious. As can be seen
in [4], where the different search methods are compared, their results differ a
lot depending on the problem at hand. It makes it hard to evaluate which
search method that should be used using tests, since the random behaviour of
the problem can influence the result more than the choice of search method.

2.7 Multiple Objectives

A important issue when optimizing solutions to a problem is that there may be
many different measures that characterize a good solution. As it is described
in the previous sections, a cost-variable was created and the labeling algorithm
was told to either minimize or maximize it. One way of managing all the differ-
ent measures would be to create such a cost-variable that takes all the different
measures into consideration. It may simply add all the measures and then the
labeling algorithm would optimize that sum. Each time a solution is found, the
sum would be constrained like:

impose Sum < Sum.min

Sum =
∑

X ∈ Xcost

wXX

15

2. Constraint Programming

where Xcost contains all the measure variables and wX is a optional weight that
can be added to some measures that are more or less important. To use such a
sum, one has to determine these weights quite accurately to make sure that each
measure has a chance of affecting optimization. With a weight that is too small,
the measure might drown in the noise from the other measures. With a too large
weight, the measure might instead drown the others.

Sometimes two or more of the measures might be in conflict. If one of them is
limited to much, the labeling algorithm might miss a solution that is extremely
good according to the other measure. This is hard to control with a single
aggregate cost-variable. The pruning that is done using a linear sum is shown as
forbidden regions in figure 2.5(a). The angle of the edge of the regions depends
on the weights in the sum. It is simple to see that with different weights, the
second solution s2 might not have been found.

By using a concept originally from economics called Pareto optimality, it is
possible to guarantee that no such solution is missed. A solution is said to be
Pareto optimal if it is not dominated in the objective space by any other solu-
tion. A solution dominates another solution when all its measures are equal or
better than the other solution and at least one measure is strictly better. All the
optimal solutions form what is called a Pareto frontier which marks the optimal
boundary of the problem. Both s1 and s2 in figure 2.5(b) are Pareto optimal and
as such they form a Pareto frontier. When they are shown in the objective space,
they are also called Pareto points. Each time a solution is found, the search space
is restricted to be better than the found solution in the following way,:

impose X1 < X1.min ∨ . . . ∨Xn < Xn.min

Both the weighted sum and the Pareto point solution could however cause a large
performance issue. As described, when a solution is found, the cost-variable is
limited to be smaller than the cost of the found solution. This can be used to
efficiently prune the search tree as the cost-variable is linked to the rest of the
CSP by one or more constraints.

When multiple measures are used, there will be many constraints connect-
ing the cost-variable to the CSP. As they are connected through a sum, their
propagators will work somewhat in parallel. If one of these constraints employ
propagators that are not as efficient as the propagators used by the other con-
straints, the limit imposed on the cost-variable caused by the solution, will not
be as effective as if the bad propagators where not used. It is not a case of
simply removing the bad propagator or its constraint, since that would cause the
measure linked to that constraint to be lost.

Instead of trying to optimize all the measures at once, the labeling algorithm
will optimize them one by one, performing one search for each cost-variable or
objective. The cost-variable that is currently being optimized in a search will
as usual be limited to be smaller than the best solution found and the other

16

2.7. Multiple Objectives

(a) Search using a linear sum.

(b) Search using Pareto points.

(c) Search using agressive Pareto points with slack ε.

Figure 2.5: The figures show the forbidden regions (gray) with different multiple
objective strategies when the solution s1 and s2 is found and the variables X1 and
X2 are cost-variables.

17

2. Constraint Programming

Figure 2.6: An example of a Pareto frontier after a search has completed.

cost-variables will be limited to be at least as good as the best value found. This
is somewhat similar to the Pareto optimality concept, but the pruning is much
more aggressive.

To make sure that it is not too aggressive, all objectives are also given a slack,
ε, which controls how limited the variable gets when a solution is found. This
is used when the variable in question is not being optimized. When a solution
is found, the cost-variable is limited to be smaller or equal to the cost of the
solution plus the variables slack. This is shown in figure 2.5(c), where X1 is
currently being optimized. The result of a finished search is shown in figure 2.6.
Three of the found solutions in the figure are not a part of the final frontier. Two
of them are not Pareto optimal and should never be a part of it, but the third is
actually a Pareto point, but it lies outside the allowed slack region of X1.

Using the aggressive Pareto concept, the ordering of the objectives are of
great importance. Looking at figure 2.5(c) it is possible to see that a solution
with the same X1 cost as s2 and a smaller X2 cost, will be overlooked by the
search because of the aggressive pruning. This is not a problem if X1 is optimized
before X2, but the other way around, the solution will not be found. To handle
this, a method called the ε-method is used [12]. It will perform the optimization
of X1 several times, increasing the upper bound of X2 stepwise from the optimal
X2 value found until it reaches X2 + εX2 .

18

3

The algorithm

3.1 Tournament model

The overall goal of the algorithm is to assign time and location to all of the
matches in the tournament. These are represented by the variables {T1, . . . , Tn}
and {A1, . . . , An}. The size of the domains linked to A1 to An depend on the
number of arenas available as each integer the domains contain maps to one
arena. All of the matches also need a integer duration, di, and the two teams
that should be playing against each other. A match can thus be described with
the following 5-tuple:

matchi = 〈Ai, Ti, di, teamj , teamk〉

where Ai and Ti are variables, di the matchs integer duration and team1 and
team2 are the teams that are going to play against each other. The teams are
used as markers to make it possible to identify all the matches that contain a
certain team.

Example 3.1. A small tournament with only two divisions can be represented in
the following way. Each division has four teams. Since all the teams should play
one match against all the other teams in their respective division, each division
also contains six matches.

Division 1:

Teams = {team1, team2, team3, team4}

Matches = { match1 = 〈A1, T1, d1, team1, team2〉,
match2 = 〈A2, T2, d2, team1, team3〉,
match3 = 〈A3, T3, d3, team1, team4〉,

19

3. The algorithm

match4 = 〈A4, T4, d4, team2, team3〉,
match5 = 〈A5, T5, d5, team2, team4〉,
match6 = 〈A6, T6, d6, team3, team4〉}

Division 2:

Teams = {team5, team6, team7, team8}

Matches = { match7 = 〈A7, T7, d7, team5, team6〉,
. . . ,
match12 = 〈A12, T12, d7, team7, team8〉}

The tournament is to be scheduled in two arenas. This means the arena variables,
A1 to A12, will all have the domain {1,2}. The arenas are shown in the following
set where equivalence indicates which arena corresponds to which domain value.

Arenas = {arena1 ≡ 1, arena2 ≡ 2}

3.2 Generation of test data

The test data that was used during the different experiments and to validate
the algorithm was extracted from a real tournament. The complete data can be
found in Appendix A. The experiments were then run on random subsets of the
entire data to try to vary the tests as much as possible. Some information about
the tournament that was used to generate the data can be found in table 3.1.

The large issue with using data from a single tournament is whether the
results are valid in general. Another way of solving this would be to create
totally random tournaments and try the algorithm with them. This would make
it possible to have more general results, but it might also result in that a lot
of work is spent on trying to handle situations that never take place in the real
world. Using random subsets of a large real tournament somewhat solves this,
but it is still not possible to say that the results are really valid in general.

Table 3.1: Information about the test data tournament

Amount
Teams 480
Matches 1005
Arenas 29
Days 2

20

3.3. Overview of the algorithm

3.3 Overview of the algorithm

Figure 3.1: Schematic image of the entire algorithm, divided into 3 steps.

A useful algorithm has to take several things into consideration. Other than
its speed or time complexity, the algorithm has to be transparent. A user must
be able to follow the process and correct possible flaws in the presented solutions.
Manual intervention is a important tool to improve the results from the algorithm.
It is not likely that a fully automatic algorithm can handle all demands from
different users. If it is possible for the user to make improvements during the
execution, many of these problems can be resolved.

As seen in figure 3.1 the algorithm is divided into tree steps. Between these
steps, it is possible for the user to modify the intermediate results. Another
benefit from this design is that the algorithm is modular in the sense that there
could be several ways to handle one of the steps. This also makes it possible to
just run one of the steps and do the rest manually.

Other than the division into steps, the algorithm is also divided into parallel
parts. These can run independently of each other. In the first step, this has
little impact on the performance, since the time complexity of this step is prac-
tically linear or even constant. In the two following steps however, it reduces the
complexity of the algorithm dramatically.

3.4 Step 1. Generate game templates

In this step, all the matches from all the divisions are divided into rounds. A
round in this context is a set of matches that should be scheduled in the same
arena and at the same day. The purpose of this is to reduce the amount of
variables that needs to be labeled in step 2. This can be done since the following
rule from the problem formulation exist:

• All matches from one division that are scheduled during a single day should
be played in the same arena

21

3. The algorithm

There exists simple algorithms that spread the teams into the rounds to make
an even distribution of matches for every team within each round. Even simpler
is to use static templates. The construction of such algorithms or templates are
not a part of this thesis work, but the following example is included to make the
overall algorithm complete. Note that in the test data in Appendix A, another
game template is used.

Example 3.2. Example of a static game template1 from Svenska Handbollsförbundet2

that are used during their youth tournaments.

3-team group:
Day 1: 1-2, 2-3, 1-3

4-team group:
Day 1: 1-2, 3-4
Day 2: 1-3, 4-2, 2-3, 1-4

5-team group:
Day 1: 1-3, 2-5, 3-4, 1-5, 4-2
Day 2: 3-5, 1-4, 2-3, 5-4, 1-2

6-team group:
Day 1: 2-5, 1-6, 3-4, 1-5, 4-2, 6-3
Day 2: 1-4, 5-6, 2-3, 4-5, 1-3, 6-2, 5-3, 4-6, 1-2

Example 3.3. Rounds created according to SHF-templates (4-team groups) us-
ing the small tournament in example 3.1:

Day 1:

Rounds = { round1 = {match1, match6},
round2 = {match7, match12}}

Day 2:

Rounds = { round3 = {match2, . . . ,match5},
round4 = {match8, . . . ,match11}}

3.5 Step 2. Assign arenas

In this step all the rounds created in step 1 get an arena assigned to them. To be
able to assign arenas to rounds one variable, Aroundi

, is created for each round.
1http://www.handboll.info/t2.aspx?p=1418750
2http://www.handboll.info

22

3.5. Step 2. Assign arenas

The duration of each round, droundi
, is calculated as the sum of all the durations

of its matches.

droundi
=

∑
k : matchk ∈ roundi

dk

CSP Models

As indicated in figure 3.1, one CSP is constructed for each day. This is possible
due to that step 1 has already divided all the matches between the days in
question. The expected number of variables that has to be labeled in each CSP
ranges between very few to a couple of hundred. With as much as a couple
of hundred variables, it is not possible to expect that the labeling process can
be complete. In the tests presented later on in this chapter, CS together with
LDS was used. Some other incomplete search methods where also tried, but the
difference in performance was not obvious. The random ordering of variables
made more difference. It is clearly an area that should be examined more, but
for now, the implemented combination of LDS and CS works.

The purpose of this step is to divide the rounds equally to the different arenas.
The solutions also have to comply with two rules from the problem formulation:

• All the matches of a category might be restricted to a subset of all arenas

• Arenas might have varying opening hours

The first point is easily handled with the In constraint. It restricts a rounds
arena variable to a subset of its original domain. As the model grows more
restricted, the smaller the domains get, which reduces the complexity of the
resulting CSP. This means that a restricted model is much better than a model
without or with very few restrictions in terms of speed. Too many restrictions
could however cause inadequate results, since the CSP might not be allowed to
use all of the arenas or some of the arenas might get cluttered with rounds. In
the next section an alternative and less strict way of enforcing such rules, by
introducing an additional objective is presented.

The algorithm also has to take the arena opening hours into consideration. In
this solution, the opening hours will not be strictly enforced by the algorithm. It
will simply try to minimize the amount of rounds in each arena taking the open
hours into consideration. But if it fails to comply with the opening hours, it will
still continue. In the manual phase between step 2 and step 3, these failures can
be reviewed, maybe resolved or step 2 could be redone with less arena restrictions.

The task concept introduced in Chapter 2 will be used to construct the CSPs.
One task will be constructed for each round according to

23

3. The algorithm

taski = 〈Aroundi
, ?, 1, droundi

〉

where the the question mark indicates that we do not care about the start time of
the rounds. The order of the task parameters might look strange since the time
and resource variables have switched places with each other. This is because we
will use the Cumulative constraint to schedule resources (as oppose to scheduling
start times) later on in this step. This makes no difference other than that it
might be slightly confusing for the reader.

Opening hours will also be modelled using tasks. Since the CSP should not
strictly enforce the opening hours, only those that differ between arenas will have
to be considered. This is done by creating special tasks that will occupy time
within arenas that have shorter opening hours.

Example 3.4. The tournament in example 3.1 has two arenas. Assume that
one of them, for example arena1, has shorter opening hours than arena2. This
means that a task

taskoo = 〈1, ?, 1, doo〉

will be created. doo will have to be calculated to match the actual short-
ening of the opening hours. For example if a match takes 40 min to play,
and the opening hours is 2 h shorter in arena1 than in arena2, doo will be
d120/40e · dmatch = 3 · dmatch.

Objective

As mentioned, the purpose of step 2 is not to create a complete schedule, but to
try to divide the rounds to the different arenas equally. No arena should have
much more rounds assigned to it than any other arena. A good measurement of
how well spread the rounds are between the arenas is the variable Sum from

MinSquare(Tasks, Sum)

where Tasks are all the tasks, both those created from matches and those created
to simulate open hours.

By minimizing Sum the rounds will be spread between the arenas. The prob-
lem with using MinSquare is its poor ability to prune inconsistent branches of
the search tree as pruning is only implemented on the Sum variable. However,
instead of only using Sum as a single cost-variable, it could be used in combina-
tion with another variable that is linked to a constraint with better propagators.
Hence, the Limit variable from

Cumulative(Tasks, Limit)

24

3.5. Step 2. Assign arenas

is used as a cost-variable without slack, to prune the search tree before Sum
is optimized. This will efficiently remove many branches with a Limit above the
smallest possible Limit found by the search. As mentioned earlier, Limit will
not be the resource limit as it usually is when the Cumulative constraint is used,
but instead it will be the time limit.

One of the main advantages of using CP is how easy it is to add additional
constraints and in this case objectives. For example, if the tournament that
should be scheduled has a large amount of rules that are more used as guidelines,
it might be a good idea to add an additional objective.

There might of course be strict or hard rules that have to be followed. These
should be modelled with ordinary constraints. Usually, all of the rules in a tour-
nament are not that strict. All rounds might for example have a favourite arena
they would like to be scheduled to. It is good if they are scheduled there, but if
that fails it should not cause the algorithm to fail finding a solution. These kind
of rules (that are often called soft rules) can be handled in another way by adding
one more objective, which tries to maximize the amount of soft rules that are full-
filled. The following construction does this with the Reified and Sum constraints.

∀Ci ∈ Csoft : Reified(Ci, Bi) where Bi ∈ {0, 1}

Sum(B, Count)

where B contains all binary variables Bi from all the Reified constraints and
Count is the variable that should be maximized. The set of all soft constraints,
Csoft can contain any type of constraint. In the example above, with the favourite
arenas, it would be In constraints restricting the variables to a small domain that
contains the rounds favourite arenas.

The labeling algorithm would in this case optimize the following three objec-
tive functions:

1. minimize Limit from the Cumulative constraint.

2. minimize Sum from the MinSquare constraint.

3. maximize Count from the Reified and Sum constraints.

It is not obvious that the use of both Limit and Sum does actually increase
the search performance. Testing has however shown that this is the case. In
figure 3.2 results from such a test are shown. The graphs show how well the
search managed to optimize the Count variable described above. Without limit,
the search hardly reached any improvements of the solutions at all. After 200
seconds it only managed to increase Count from 40 to 45. If Limit was used as
a first objective, the search managed to find a solution with Count = 45 after
only 10 seconds. After that it continued to improve until it reached 50 after 25
seconds. After 200 seconds it reached 53.

25

3. The algorithm

The optimal Count value for this test problem has not been calculated, but
the results does quite clearly show that Limit and its Cumulative propagators
does a good job pruning the search tree.

0 50 100 150 200 250
40

42

44

46

48

50

52

54

Figure 3.2: Optimizing Count using with and without the Cumulative Limit
objective

Example 3.5. Continuing where example 3.3 left off. The two following CSPs
should be created,

Day 1:

P1 = 〈 X= {Around1 , Around2},
D= {{1, 2}, {1, 2}},
C = {Cumulative({task1, task2}, Limit),

MinSquare({task1, task2}, Sum),
In(D1, Around1), In(D2, Around2)} 〉

Day 2:

P2 = 〈 X= {Around3 , Around4},
D= {{1, 2}, {1, 2}},
C = {Cumulative({task3, task4}, Limit),

MinSquare({task3, task4}, Sum),
In(D3, Around3), In(D4, Around4)} 〉

Around1 = A1 = A6

Around2 = A2 = . . . = A5

Around3 = A7 = A12

Around4 = A8 = . . . = A11

26

3.5. Step 2. Assign arenas

Variable and value ordering

Both the value and the variable ordering turned out to be very important when
labeling the CPSs. Two functions are used to order both the variables and the
values in their domains. The first one is called the Ground of a domain value
and it is defined as:

Ground(x) =
∑

k : {x} = domain(Aroundk
)

droundk

It is a measurement of how many matches that are fixed to a certain arena. This
can be used to make sure that the rounds get spread out by avoiding domain
values with a high Ground.

The second one, called Density calculates the density of a domain value.
Unlike Ground it also takes account of the variables that have not been fixed
yet. It is defined as:

Density(x) =
∑

k : x ∈ domain(Aroundk
)

droundk

domainSize(Aroundk
)

They were both constructed to be able to mimic the way manual scheduling
is normally executed.

Example 3.6. A simple example of how Ground and Density is calculated
can be found in figure 3.3. In the left part of the figure the rounds are shown as
rectangles. Their width show their current domains and the height their duration.
Round 3 and 4 are fixed and as such, their duration can be seen in the Ground
measure. The Density measure, does also contain contributions from round 1
and round 2. They add their duration divided by the size of their domain to the
Density of each of the values in their domains.

Figure 3.3: Example showing how Density and Ground is calculated.

The value ordering is based on the succeed-first principle. Since the idea is to
minimize the opening hours of the arenas, this simple means choosing the value
with the lowest Ground. If two or more values exist with the same Ground, the
one with the lowest Density is selected.

27

3. The algorithm

The variable ordering was initially based on the fail-first principle with the
simple minimum domain variable ordering. With that ordering, the labeling
process never seemed to find the optimal solution with regards to the to the
MinSquare cost-variable. By changing the minimum domain ordering into the
more advanced

order by

domainSize(X) /
∑

x ∈ domain(X)
(Density(x)−Ground(x))

,

the results got much better. The domain size is still a part of the ordering
metric, but both Ground and Density have been added to improve its perfor-
mance. The density part follows straight from the first-fail principle. A variable
with a higher average density in its domain should be chosen first because it is
more likely going to cause inconsistencies.

The Ground part is added after testing and studying live manual scheduling.
Is causes the variable ordering to switch between variables with different domains,
allowing all of them the opportunity to get scheduled at common domain values.
This is especially important in the beginning of the search.

With the new ordering, the labeling process does not only find the best so-
lution, it seems like it is always the first solution it finds. This means that a lot
less time can be spent finding a optimal limit on the first two cost-variables. It
also means that when searching for good solutions with respect to the remaining
cost-variables, the search tree will get pruned efficiently by both the Cumulative
and the MinSquare constraint.

Some results using these different heuristics can be seen in figure 3.4. The
squares show labeling results with a random value order and a smallest domain
variable order. The circles show when the random value order has been exchanged
to the one using Density and Ground. When the variable ordering is exchanged
to the one using Ground and Density the optimal solution is found directly,
indicated by a bold plus sign in the lower left part of the graphs. The optimal
solution is also indicated by one dashed horizontal line in both the graphs.

So far, the value and variable ordering have only considered the MinSquare
objective. Introducing additional objectives will most likely change how the vari-
ables and the values should be ordered. In the previous section another objective
counting how many of the rounds that are scheduled within their favourite arena
was introduced. Some results from optimizing that count is shown in figure 3.5.

With nothing else than the variable and value ordering described above, the
first solution found have a count equal to 17. By changing the value order to
take the favourite arena into consideration – favourites where chosen over non-
favourites – the count was improved to 40. This small example shows that the
search heuristics has to be considered if and when new objectives are added.

28

3.5. Step 2. Assign arenas

0 5 10 15 20 250.9

0.95

1

1.05

1.1

1.15

1.2
x 104

0 5 10 15 20 25 30 350.9

0.95

1

1.05

1.1

1.15
x 104

0.9159

0.9237

(a) Loose arena restrictions

0 5 10 15 20 250.9

0.95

1

1.05

1.1

1.15

1.2
x 104

0 5 10 15 20 25 30 350.9

0.95

1

1.05

1.1

1.15
x 104

0.9159

0.9237

(b) Tight arena restrictions

Figure 3.4: Labeling results using different variable and value orderings. The
arena restrictions are constrained with the In constraint.

Composite Arenas

Most arenas contain a multitude of different lines on the floor to make the arena
usable to as many sports as possible. Sometimes a single arena can contain lines
for one handball field and two or more volleyball fields at the same time. This
means that two or more volleyball matches can be scheduled at the arena at
any one time, but only one handball match. If a tournament contains matches
from both handball and volleyball, the scheduling model has to be able to handle
this. This is also applicable to football, where teams of age 12 and less play on a
smaller field (with less players) than the older teams. The large field does often
contain two smaller fields that can be used by the younger teams. This can be
modelled by changing the tasks in the following way:

29

3. The algorithm

0 50 100 150 200 250
15

20

25

30

35

40

45

50

55

Figure 3.5: Optimizing Count using different value orderings.

taski = 〈Aroundi
, ?, Si, droundi

〉

where the 1 in the original representation is replaced with a Si. Instead of
forcing the rounds to just occupy one arena, they can now occupy Si arenas. For
the matches than can be played on the small fields within the larger field, Si can
still be restricted to 1. But the matches that require the larger field must occupy
all the smaller fields within that field. That means that for all the fields that
contain several smaller fields, Si must be equal to the number of smaller fields.
Since not all large fields contain smaller fields or contains the same amount of
smaller fields, Si will have to be different depending on in which large field the
task is scheduled. This can be handled by the Element constraint.

Example 3.7. Assume that arena1 from example 3.1 actually also contains two
smaller arenas, arena3 and arena4. A task that can be scheduled in the two
large arenas, arena1 and arena2, would then be defined as:

Figure 3.6: Composite
arena example

Alarge :: {arena1 ≡ 1, arena2 ≡ 3}

tasklarge = 〈Alarge, ?, Slarge, d〉

Element(Alarge, {2, 1, 0}, Slarge)

and a task that can be scheduled in the two
small arenas, arena3 and arena4, can be defined
as:

Asmall :: {arena3 ≡ 1, arena4 ≡ 2}

tasksmall = 〈Asmall, ?, 1, d〉

30

3.6. Step 3. Assign timeslots

In figure 3.6 two small and two large tasks have been placed into the arenas.
The small tasks are not allowed to be placed into arena2 and any large task
placed within arena1 will have size 2 instead of 1, as the Element constraint im-
poses. Note that arena1 and arena3 share the same domain value. It is therefore
up to the model to keep track of where certain tasks are allowed to be scheduled.
For example that the large task must be scheduled in arena1 since it is large,
but the small task must be scheduled in arena3.

3.6 Step 3. Assign timeslots

In this step all the matches are assigned start times. Because of the work done
in the previous steps, this is actually much simpler than it was assigning the
arenas in step2, even though there are more time variables than there were arena
variables. This is because the results from the two first steps can be used to
split this step into more parallel parts, one for each arena and day. Each of these
parts are modelled as a CSP that can be independently solved without interfering
with one another. There will be a lot more CSPs in this step, but they will take
much less time to solve. Unlike the CSPs in step 2 they can actually be solved
completely most of the time.

CSP Models

The two main rules from the problem formulation that have to be followed are,

• Two matches cannot be played at the same time and place

• A team cannot play two consecutive matches

Both of the rules are standard scheduling rules and can be modelled with
tasks and Cumulative constraints. The second rule can be somewhat generalized
by enforcing a minimum amount of rest between two matches for a team. The
rule above says that a team has to rest for at least one match between two of
its consecutive matches. This can be generalized to r number of matches. Each
match,

matchi = 〈Ai, Ti, di, teamj , teamk〉

is then modelled with three different tasks,

• taski = 〈Ti, ?, di, 1〉,

• taskj
i = 〈Ti, ?, (r + 1) · di, 1〉,

• taskk
i = 〈Ti, ?, (r + 1) · di, 1〉

31

3. The algorithm

The tasks are then used in several Cumulative constraints. The first task is used
in the main Cumulative constraint for the CSP. It constrains the tasks so that
no two tasks, scheduled in the same arena the same day can be scheduled at the
same time. This means that one such Cumulative constraint will be created for
each day and arena containing all match tasks that should be scheduled in that
arena during that day.

Both the other tasks are linked to one of the teams in the match. They are
used enforce that there always is at least r number of matches between each
match that a team plays. This is also modelled with Cumulative constraints.
One constraint is created for each team and day.

To limit the amount of possible solutions, the order of the variables is also
constrained. The order that used is defined by the game template that was used
in step 1, for example the game template in example 3.2 on page 22. The restric-
tion is imposed with many

XplusYleqZ(Ti, di, Tj)

where Ti and Tj are the start times for two consecutive matches within one
round.

The reason for limiting the schedule in this way is that the teams are not
unique. It is possible to construct a new solution from a old solution by just
switching two of the teams. This can also be done with an entire branch of the
search tree. By only allowing one match ordering within the schedule, only one
of those symmetrical branches has to be explored.

In example 3.9 on page 37, two of the CPS, P1 and P3, look very similar. The
only difference between them is the indices of the tasks that should be scheduled.
This means that any solution to P1 will also be a solution to P3. Solving both of
them would be a waste of time. Since almost all of the divisions in a tournament
uses the same game template and have the same size, this kind of symmetrical
CSPs will be common. The test problem in Appendix A does almost only consist
of symmetrical CSPs in step 3. The 58 original CSPs could be reduced to around
6-10 unsymmetrical CSPs, depending on what the solution from step 2 looked
like when the algorithm was tested.

Example 3.8. Assuming that step 2 found a solution to the CSPs in example
3.5 that was,

Around1 = 1
Around2 = 2
Around3 = 1
Around4 = 1

the following four CSPs could be constructed for step 3,

32

3.6. Step 3. Assign timeslots

Day 1, arena1:

P1 = 〈 X= {T1, T6},
D= {{1, . . . , tend}, {1, . . . , tend}},
C = {Cumulative({task1, task6}, 1),

XplusYleqZ(T1, d1, T6)} 〉

Day 2, arena1:

P2 = 〈 X= {T2, . . . , T5, T7, . . . , T11},
D= {{1, . . . , tend}, . . . , {1, . . . , tend}},
C = {Cumulative({task2, . . . , task5, task7, . . . , task11}, 1),

Cumulative({task1
2, task1

3}, 1), . . .
XplusYleqZ(T2, d2, T5), . . .} 〉

Day 1, arena2:

P3 = 〈 X= {T7, T12},
D= {{1, . . . , tend}, {1, . . . , tend}},
C = {Cumulative({task7, task12}, 1),

XplusYleqZ(T7, d7, T12)} 〉

Day 2, arena2:

P4 = 〈 X= {},
D= {},
C = {} 〉

It is easy to see that the solution provided by step 2 is not optimal since no round
was scheduled in arena2 at the second day of the tournament. This is of course
not what a real solution would look like, but it illustrates how the CSPs, P1 to
P4, is created. Since none of the rounds was scheduled in arena2 at the second
day, P4 is completely empty. P3 does on the other hand contain the start times
of the matches from both round2 and round4.

In figure 3.7 a solution to P2 is shown where the different Cumulative con-
straints and the involved tasks are illustrated. The main constraint is shown to
the left with tasks of duration dmatch is scheduled on a single resource. Other
than that, there is one Cumulative constraint for each team with tasks of dura-
tion 2·dmatch. That will make sure that no team will have to play two consecutive
matches.

33

3. The algorithm

Figure 3.7: Solution to P2 from example 3.9 where all the different Cumulative
constraints are illustrated.

Objective

Trying to keep the opening hours as short as possible is still one of the objectives
of the algorithm. It can be done by minimizing

max
j

(Tj + dj)

Other than that, it should also try to minimize each teams waiting time, wait.
The waiting time can be approximated with

waiti = max
j

T i
j −min

j
T i

j

where T i
j is the start time for taski

j and waiti is the waiting time for teami.
It is not the exact waiting time, but minimizing it is equivalent to minimizing
the actual waiting time. It is also relatively easy to construct using the Min and
Max constraints.

The waiting time can itself be minimized in two ways. Either the total waiting
time could be minimized or the maximal waiting time for a single team. One
benefit of using the concept of multiple objectives is that it is possible to use
both of them. It is motivated since we want to minimize the total waiting time,
but at the same time we cannot do it if it causes a very long wait for one of the

34

3.6. Step 3. Assign timeslots

teams. By using both objectives, it is possible to restrict the maximal waiting
time, making sure that no team has to endure such a period of rest.

The problem with all three objectives is that they do not work in the same
direction. If we restraint one of the to hard, it might not be possible to find a
solution that is good according to the other objectives. By using slack with all
the objectives this problem is avoided. The slack variables could even be chosen
by the user, for example by specifying the maximum amount of allowed empty
slots in the schedule. The amount of empty slots would then be used as the
slack variable for the open hours objective. Using slack will cause the search to
return all Pareto optimal solutions. It will then be up to the user to choose which
solution that should be used. To sum up, the three following objectives are used,

1. minimize the opening hours of the arena with slack εoo

2. minimize the total waiting time for all teams with slack εtot

3. maximize the maximum waiting time for any one team with slack εmax

In figure 3.8(a) and (c), labeling is done on several CSPs with different sizes.
In the first figure, εoo = 1, εtot = 10 and εmax = 0. In figure (c), εoo has been
changed to 3, εtot to 20 and εmax to 2. The higher slack in figure 3.8(c) does not
allow for as much pruning as the search in figure 3.8(a). The search tree that is
explored can because of this be much larger. This results in the higher maximal
search times that can be seen in the figure. At the same time, the lower bound
stays within the same interval around 1 second.

Variable and Value ordering

Both the variable and the value ordering are chosen according to the basic heuris-
tical principles that were discussed earlier.

The variables are ordered by the size of their domain – smallest domain first.
It is hard to see how this could be improved in a simple way. Since the amount
of variables in the CSPs is fairly small it is not such a big issue compared to the
variable orderings of the CSPs in step 2. The same goes for the value ordering
which simply chooses the smallest possible value from the domains to satisfy the
open hours objective.

Watching figure 3.8 it is possible to see that the variable ordering is not
optimal. Most of the CSPs with the same number of variables are actually totally
symmetrical. The only difference is their variable ordering which is randomized
before the search begins. Even though they are exactly alike, the difference in
how much time they take is very large. By constructing a variable ordering that
manages to order the variables in the best way, the search time would be cut
dramatically. Especially when the CSPs are complex as in figure 3.8(b) and (c).
As of now, that variable order has not been found, but it is as mentioned a small
problem since the number of variables are not that large.

35

3. The algorithm

5 10 15 20 5 10 15 20 5 10 15 20

1

10

100

1

10

100

1

10

100

(a) Ordinary CSPs

5 10 15 20 5 10 15 20 5 10 15 20

1

10

100

1

10

100

1

10

100

(b) Longer rest times

5 10 15 20 5 10 15 20 5 10 15 20

1

10

100

1

10

100

1

10

100

(c) More slack in optimization

Figure 3.8: Three different simulations and the amount of time it took to solve
CSPs with different amount of variables. Note the logarithmic scale. The dashed
lines are just a visual aid to help compare the figures.

Related Arenas

In the problem formulation it was stated that:

• All matches from one division that are scheduled during i single day should
be played in the same arena

In step 2 of the algorithm this was used to conclude that all the matches in one
round had to be scheduled in one arena. In the real world, there exist locations
which contain several arenas. Since these arenas lie close to each other, it would
be possible to schedule a teams matches a certain day in both of the arenas.
This is not possible otherwise, since you cannot expect a team to travel between
different arenas during one day.

To model related arenas, some extra variables has to be introduced. For each
match that should get scheduled, a extra arena variable A′ is created. It will then

36

3.6. Step 3. Assign timeslots

be used to schedule the match into one of those related arenas. Since we now
have to schedule both the time and arena for these matches, the main Cumulative
constraint has to be exchanged to a Diff2 constraint. As two or more matches
from a round can be scheduled at the same time, the XplusYleqZ constraint has
to be exchanged to a XleqY constraint. This will however reduce the amount
of pruning that can be done. By also adding another constraint, XplusYleqZ,
between a teams matches, some of that pruning will still be possible.

As the number of variables is at least quadrupled, the complete search method
has to be replaced with a incomplete search method. The variable ordering
should also be changed to take the new type of variables into consideration. One
common way of doing so is to group the arena variable and the time variable for
each match, and assign them together at the same time in the search.

Example 3.9. Assuming that arena1 and arena2 are related, the CSPs in ex-
ample 3.9 will be combined into two CSPs instead of the original four. P1 and
P3 would be combined into P1+3, and P2 and P4 would be combined into P2+4.
Since P4 was empty already from the beginning P1+3 is the most interesting one.
Four new arena variables, A′1, A′6, A′7 and A′12 has to be created for P1+3. The
result would look like:

task′1 = 〈T1, A
′
1, d1, 1〉

task′6 = 〈T6, A
′
6, d6, 1〉

task′7 = 〈T7, A
′
7, d7, 1〉

task′12 = 〈T12, A
′
12, d12, 1〉

P1+3 = 〈 X= {T1, T6, T7, T12, A
′
1, A

′
6, A

′
7, A

′
12},

D= {{1, . . . , tend}x4, {1, 2}x4, }
C = {Diff2(task′1, task′6, task′7, task′12), . . .} 〉

37

4

Discussion

The most prominent feature of the constructed algorithm is how it is divided into
several small CSPs. It has lead to two mayor gains. First of all, the smaller CSPs
does not contain that many variables. This means that they can be run during
only a few minutes with good results. The total amount of variables in a real
case can easily reach a thousand or even several thousand. Finding a somewhat
optimal solution to a CSP with that many variables would be almost impossible.
It would require a perfect value and variable ordering to avoid any branching of
the search tree.

One may also qestion whether an algorithm that managed this – that can
solve everything within one large CSP – would be better than the current solution
anyway. The big problem with a large, do-it-all, one step algorithm is to construct
a user interface that is easy to use. Before the algorithm can be run, the user
has to feed the algorithm with all the necessary settings. This can be a real
problem for an user that is new to the system and it is likely that many of the
features of the algorithm will remain unused. Additionally, if the algorithm does
not find a solution that the user finds sufficiently good, the whole process has to
be restarted and the user has to figure out which settings it was that caused the
problems.

The second large gain from having multiple CSPs is that many of these prob-
lems can be avoided. The user only needs to feed the currently necessary settings
to the algorithm. It is furthermore even possible to run the different parts with
different settings. If one of the CSPs does not produce a sufficiently good solu-
tion, it is possible to let that part run a little longer using the current Pareto
frontier to prune the search tree.

39

4. Discussion

4.1 About the results

Since the algorithm that was presented in the previous chapter is divided into
three steps, their results will be discussed independently. As the first step does
not use Constraint Programming but is more of a tournament management prob-
lem, it is left out of this discussion.

Step 2

The second step was the most demanding as its CSPs are handling a large amount
of variables. A lot of work was spent trying different variable and value orderings
to improve the labeling speed. It turned out that the standard first-fail variable
orderings did not make the CSPs solvable in reasonable time. Even after test
runs that lasted over night for tens of hours, the soultions found where not even
close to the optimal solutions. Visualizing the found solution, it was easy to find
errors in it and an algorithm that produces obvious errors to the user is hardly
any good.

Using the idea of the first-fail-principle, but taking it one step further and
adapting the heuristic to the problem at hand, the domain value metrics Ground
and Density were introduced. With them, it was possible to construct both a
variable ordering and a domain value ordering that actually found the optimal
solution (of the basic algorithm) in just a few seconds.

From this success, as the basic construction seemed to work, two extensions
were also implemented to evaluate how hard it would be. Both a structural ex-
tension handling composite arenas and a objective extension where rounds where
scheduled to their favourite arenas were constructed and tested successfully. Be-
cause Constraint Programming was used as a platform, the extensions were easy
to model.

Step 3

The third step has the advantage that the CSPs are fairly small in their number
of variables. This means that the labeling actually could be complete unlike in
step 2. With the used test data, the largest number of variables that were used
in one CSP was 22. With that amount of variables, the search completed within
a couple of minutes most of the time.

In figure 3.8 on page 36, the exponential worst time complexity can be seen
with some different CSPs. It is also possible to see that sometimes the CSPs can
be solved in a lot less time than the worst case time. This is most visible in figure
(b) and (c). The difference in running time does actually not depend on that
the CSPs are different, since almost all of the CSPs with the same number of
variables will have the same number of rounds and size of the rounds and so on.
It is actually the initial variable ordering from when the CSPs are created that

40

4.2. Future work and improvements

make all the difference. If that variable ordering could somehow be calculated
and the variables ordered accordingly, the labeling speed would be increased
dramatically.

An alternative to this would be to restart the labeling with a new random
variable ordering when a time limit it exceeded, hoping that the new variable
ordering was better than the last. The new search could of course use all the
results that the last search used, to make sure it was not a total waist of time.

4.2 Future work and improvements

The most important work that remains is probably the Graphical User Inter-
face. The algorithm can be used as it currently is, but it will not make much
sence without a user interface where the users can make necessary settings and
supervise the execution.

The structure of the algorithm allows for a user interface where the user is
involved, being able to correct and change tings as the process goes along. The
most obvious way to take advantage of the algorithms step structure is to allow
the user to modify the intermediary results between the steps. It would also
be possible to create an interface where the users can choose to solve individual
CSPs. For example scheduling a single arenas matches. When incomplete search
methods are used, the user could also decide to refine the search, letting a single
CSP work some more to improve its solutions. The possibilities are endless and
they will not all be discussed here, but the shown ideas show the important
modular feature of the algorithm.

Other than the interface, some loose ends exist within the algorithm. The
biggest part is to construct and find additional test data and run more tests
to find if and where there might be bottlenecks in the algorithm. Since the
optimization problem most likely is NP-hard, the time it takes to find optimal
solutions can suddenly sky rocket when the amount of variables grow. With
the additional test data, the incomplete search methods that are used should be
evaluated, to find optimal values for limits, credits and perhaps time-outs.

4.3 Conclusion

The purpose of this thesis was to investigate whether it was feasible to construct
a basic algorithm for scheduling Sports Tournaments using Constraint Program-
ming. The results and the algorithms presented in the previous chapters, show
such a basic algorithm that works well with the test data that was used. In that
sense, the algorithm that have been presented can be considered to be a success.

Other than that, the algorithm also proved to be transparent and modular,
which will make it easier to construct a good graphical user interface. Much work
is still left undone. Both with improving the basic algorithm, creating extensions

41

4. Discussion

and of course the graphical user interface, which from the finished product point
of view is almost the most important part.

42

Bibliography

[1] A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems. Mathematical and Computer Modelling,
17(7):57–73, 1993.

[2] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based scheduling: ap-
plying constraint programming to scheduling problems. Springer, 2001.

[3] R. Barták. Incomplete depth-first search techniques: a short survey. In
Proceedings of the 6 th Workshop on Constraint Programming for Decision
and Control, Ed. Figwer J, pages 7–14, 2004.

[4] Roman Bartk and Hana Rudov. Limited assignments: A new cutoff strat-
egy for incomplete depth-first search. In In Proceedings of the 2005 ACM
Symposium on Applied Computing. ACM, pages 388–392. ACM, 2005.

[5] J.C. Beck, P. Prosser, and R.J. Wallace. Trying again to fail-first. Recent
Advances in Constraints. Papers from the, pages 41–55, 2004.

[6] Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique
applied to the non-overlapping rectangles constraint. In Seventh Interna-
tional Conference on Principles and Practice of Constraint Programming,
LNCS 2239, pages 377–391. Springer, 2001.

[7] E. Boutteau, P. Chan, and D. Rivreau. Partial Search Strategy in CHIP.
In 2nd International COnference on Metaheuristics, 1997.

[8] D. Briskorn and A. Drexl. A branch-and-price algorithm for scheduling sport
leagues. The Journal of the Operational Research Society, 60:84–93, 2009.

[9] J.P. Hamiez and J.K. Hao. Using solution properties within an enumerative
search to solve a sports league scheduling problem. The Journal of the
Operational Research Society, 156:1683–1693, 2008.

43

Bibliography

[10] R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artificial intelligence, 14(3):263–313, 1980.

[11] W.D. Harvey and M.L. Ginsberg. Limited discrepancy search. In Interna-
tional Joint Conference on Artificial Intelligence, volume 14, pages 607–615.
Lawrence Erlbaum Associates LTD, 1995.

[12] C.L. Hwang and M. Abu Syed Md. Author Multiple objective decision mak-
ing, methods and applications: a state-of-the-art survey. Berlin: Springer-
Verlag, 1979., 1979.

[13] K. Marriott and P.J. Stuckey. Programming with constraints: an introduc-
tion. MIT press, 1998.

[14] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint programming.
Elsevier Science, 2006.

[15] A. Schaerf. Scheduling sport tournaments using constraint logic program-
ming. Constraints, 4:43–65, 1997.

[16] Barbara M. Smith. Succeed-first or fail-first: A case study in variable and
value ordering, 1996.

[17] M. Stolevik, G. Hasle, and O. Kloster. Solving the Long- Term Forest Treat-
ment Scheduling Problem. Geometric Modelling, Numerical Simulation, and
Optimization Applied Mathematics at SINTEF, 2007.

44

A

Table A.1: The gametemplates used with the test data

Size 5 Size 6
Day 1 1-3, 2-5, 3-4, 5-1, 4-2 1-5, 2-4, 6-3, 2-1, 3-5, 4-6, 3-2, 4-1
Day 2 3-5, 4-1, 2-3, 5-4, 1-2 6-5, 4-3, 5-2, 1-6, 5-4, 1-3, 6-2

Table A.2: The basic test data that was used in the evaluations of the algorithm

Divisions Hard restrictions day 1 Favourite arena(s) day 1
Hard restrictions day 2 Favourite arena(s) day 2

1. 4x5, 2x6 {1..7, 9..13, 16, 20..23, 26, 27} {1..3}
{1..5, 7, 8, 9, 12..17, 21, 23, 25, 26} {1..5}

2. 4x5 {5, 6, 16}
{8}

3. 1x5, 2x6 {7}
{9}

4. 8x5, 1x6 {1, 9, 11, 12, 13, 23}
{3..5, 14, 15, 23}

5. 2x5, 1x6 {6}
{16}

6. 7x5, 1x6 {2, 4, 20, 21}
{2, 3, 7, 13}

7. 4x5 {22}
{21}

8. 1x5, 2x6 {4, 16, 23}
{1, 12, 17}

9. 8x5, 1x6 {9, 10, 26, 27}
{12, 13, 23, 25, 26}

10. 4x5 {1, 2, 4, 6, 8..10, 15..19, 23..25, 28, 29} {2, 4, 10}
{1..3, 5..7, 10..13, 17..20, 22..24, 27..29} {2, 3, 6, 7, 13}

11. 3x5 {6}
{10}

12. 6x5 {8..10}
{11..13, 23}

13. 5x5 {4, 15..17, 23}
{1, 12, 17, 18}

14. 4x5 {7, 18}
{19}

15. 3x5, 1x6 {6, 16, 19}
{10, 20}

16. 7x5 {1, 2, 17, 24, 25, 28}
{1..3, 5, 24, 27, 28}

17. 6x5, 1x6 {1, 9, 17, 23..25}
{3, 5, 22..24}

18. 3x6 {29}
{29}

45

B

Word list

Cost-variable see page 7 and 15

CP – Constraint Programming

CS – Credit Search see page 13

CSP – Constraint Satisfaction Problem see page 5

Cumulative see page 10

Diff2 see page 11

Domain see page 5

Game template see page 21

JaCoP – Java Constraint Programming Library see page 6

Labeling see page 7

LDS – Limited Discrepancy Search see page 13

Pareto frontier see page 15

Pareto optimal see page 15

Propagator see page 8

Value see page 5

Variable see page 5

47

